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Note 

A Nonfunctional Method for Reducing Cumulative or 
Histogram Data to a Smooth Distributional Form or for 

Constructing a Smooth Approximation to Experimental Data 

This note is concerned with the solution of three types of problem which 
commonly arise in studies of a scientific or statistical nature. These problems are: 
(a) the estimation of a continuous frequency distribution from experimental data 
in cumulative form; (b) the estimation of a continuous frequency distribution from 
experimental data in histogram form; and (c) the estimation of a continuous curve 
which describes an array of experimental data points. 

For situations in which the solution has some known analytic form the usual 
approach would be to use standard probability plotting or curve fitting methods. 
This note is, however, concerned with those examples in which the analytic form 
is not known or does not exist. The method of solution used is basically that due 
to Phillips [4] and Twomey [SJ. The method is particularly suitable for use by the 
nonspecialist since the shape of the solution and the degree to which it fits the data 
is controlled by the value of a single smoothing parameter. In addition, the solution 
form may also be controlled by data weighting and facilities for presetting the 
solution values or gradients at any desired points along its range. This enables a 
priori information to be incorporated into the type of solution derived. 

For a system described by the continuous frequency distribution D(r), which is 
sampled experimentally to provide information on the distribution in cumulative 
or histogram form, the following integral relationship holds, 

10 + 1’ D(r’) dr’ = Fj + Ej ; j = 1, 2 *** n; i=l or j-l, (1) 
+i 

where Fj denotes the measured value, Ej its associated error, and ri and r, the range 
values of the independent variable associated with the measurement. I, is equivalent 
to the integral I!& D(r’) dr’ and is referred to as the zero integral. 

The three problems posed above may now be described in terms of Eq. (1) as 
follows: 

(a) For cumulative information, Cj , 

F3 G C, ; i = 1 for all j, 
I,, variable (2) 
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(b) For histogram information, Hj , 

Fj SC Hj ; i = 1 for j = 1, i = j - 1 for j = 2, 3 *.. n, 

I, = Fl = cl = 0 
(3) 

(c) An approximation, F(r), of the information Fj is obtained by solving as 
for the cumulative case and then setting, 

F(r) = I, + 1’ D(r’) dr’. 
*1 

(4) 

When expressed in these forms all three problems then reduce to that of solving 
Eq. (1) for I, and D(r). 

Equation (1) may be solved by quadrature using the smoothing technique due to 
Phillips [4] and Twomey [5]. Thus, Eq. (1) is first written in the form 

(h/3) Ad = f + E, (5) 

where f is an n-vector representing the values Of Fj ; f is an n-vector representing the 
values of cj plus error terms introduced by the quadrature; d is an (m + I)-vector 
in which the first m values denote D(r) evaluated at (m - 1) equispaced intervals, 
dr, in the range rl to r, , and the (m + 1)th value represents I,,/&; A is an n by 
(m + 1) quadrature matrix operator which is chosen to numerically integrate d 
over the particular ranges specified by the problem. The factor h/3 is simply a 
scalar multiplier associated with A. The smoothing solution for Eq. (5) is then given 
by 

d = (3/dr)(AA - aD)-l XJ (6) 

where CY is an undetermined Lagrange multiplier the value of which determines 
the amount of smoothing produced, 2 denotes the transpose of A, and D is a 
square matrix of dimension (m + 1) by (m + l), which arises from the smoothing 
process used. For the present problem adequate smoothing is obtained by mini- 
mizing the sums of the squares of the first or second differences, in which case D 
has essentially the form of either a second or fourth difference operator, 
respectively. 

By modifying Eq. (5) it is possible to derive solutions for din which any particular 
element or elements have preset values. Suppose, for example, the elements dk are 
preset for given values of k. Equation (5) is then rewritten 

(h/3) A’d’ = f’ -I- E, (5’) 
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where the prime denotes a modified form such that A’ = A modified to remove its 
kth columns Ak , d’ = d modified to remove its kth elements Q , and 

j’ = f - c (43) A,d, . 
k 

Proceeding as for the previous case, a smoothing solution is then obtained of 
the form 

d’ = (+ A’A’ - D’)-1 (A&j’ + c (Dk)’ d,), 
k 

where D’ = D modified to remove its kth columns and rows and (DK)’ denotes the 
kth columns of D modified to remove their kth elements. 

In addition to presetting particular elements of the solution it is also possible to 
incorporate weighting of the data points. This can be done with the aid of the 
diagonal weighting matrix W of dimension n by n, which contains the required 
weighting values along its diagonal. Upon incorporating this it can be shown that 
the solution then becomes 

d’ = (; A’WA’ - D’)-1 (A A’wj’ + ; (Dk)’ dk). 

It should be noted that the practical consequencies of presetting the elements 
of d depend upon the type of problem being considered. Thus, for problems (a) 
and (b) (see Eqs. (2) and (3)) the effect is clearly to force the distributional solutions 
to have given values at the selected points. On the other hand, for problem (c) 
(see Eq. (4)) d d escribes the gradient behavior of the solution. Consequently, 
presetting elements of d in this case produces a solution with given local gradient 
values. However, the actual solution values may also be controlled, if required, 
by supplying highly weighted data values at the selected points. 

A Fortran IV computer program called SMUVIT has been written to execute the 
foregoing procedure. The program has been written as a multipurpose package 
which can analyze the input data either as cumulative, histogram or curve fitting 
information. Facilities for data weighting and presetting solution values as 
discussed above are also incorporated. The results of all the following examples 
were computed using this program. These examples were chosen purely to illustrate 
the applications of this smoothing technique. No attempt has been made to derive 
‘best’ solutions; the results have simply been chosen to illustrate the types of 
solution which are produced. 

In the first example exact data corresponding to a normal frequency distribution 
were analyzed. These data provided cumulative values for unit intervals of the 
independent variables in the range -3 to $3. The data values were all given unit 
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FIG. I. Reproduction of a normal distribution from exact cumulative data. - true curve; 
- - ---input data in histogram form; A smoothing result for OL equals lo*. 
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FIG. 2. Reproduction of a skewed distribution from exact histogram data. - true curve; 
----- input histogram data; A and o smoothing results with and without preset tail values. 

weighting and no attempt was made to preset any of the distributional elements. 
The result obtained using second difference smoothing with 01 equals lo2 is presented 
in Fig. 1 together with the true normal distribution and the histogram 
corresponding to the input data. Reproduction of the true distribution is seen to be 
good except for the tail regions which tend to go negative. The latter could, 
however, be prevented if required by presetting the tail values to zero or some small 
positive value. 
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The value of the presetting facility is demonstrated by the second example which 
considers data relating to the frequency size distribution of an atmospheric 
aerosol [2]. This data was supplied in histogram form as illustrated in Fig. 2 and 
distributional solutions were derived using first difference smoothing with 01 
equals 10. With no presetting the solution (given by circles) is monotonic and bears 
little resemblance to the true distribution. This result is understandable from the 
shape of the input histogram and is, in fact, the point Fuchs [2] makes concerning 
the misleading nature of the data. However, if, acting on a priori information the 
initial distributional value is preset zero, a solution (given by triangles) is then 
derived which resembles fairly accurately the true distribution. 

The application of the technique to approximation problems is well illustrated 
by considering an example used by Guest [3] when discussing methods of poly- 
nomial regression. This data together with the results obtained using second 
difference smoothing with 01 equals 1 and 10 are presented in Fig. 3. Polynomials 
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FIG. 3. Production of a smoothed approximation to scattered data. x input data; - - - - - 
smoothing result for (Y equals 1; - smoothing result for OL equals 10. 

of up to degree eight were also fitted to these data, but it was found that the detailed 
structure exhibited by the smoothing results could not be reproduced by these 
polynomials. Whether or not this structure is meaningful will, of course, depend on 
the data. The main point of the example is, however, to illustrate that the smoothing 
technique is the more suitable of the two for approximating data containing such a 
structure. 

The final examples, Figs. 4 and 5, illustrate some of the effects of scatter on 
reproducing distributions from inexact histogram data. This data was obtained by 
drawing 50 observations at random from the distributions under consideration and 
was due originally to Fryer [l]. The least smoothing results are seen to follow to 
some extent the variations in the data, but these are sufficiently smoothed out in 
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the large smoothing results to provide a reasonably good representation of the true 
distributions. 

It is evident from the previous examples that the smoothing technique described 
herein provides a useful means of interpreting cumulative or histogram data in 
terms of a smooth frequency distribution. Although potentially misleading data 
such as that illustrated by Fig. 2 may produce incongruous results, the application 
of a priori information in conjunction with the presetting facility provides a means 
of avoiding this. 
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FIG. 4. Reproduction of an exponential distribution from scattered data. - true curve; 
- - - - - input histogram data; A and o smoothing results for a equals 10 and lo*, respectively. 
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FTG. 5. Reproduction of a normal distribution from scattered data. - true curve; 
- - - - - input histogram data; A and o smoothing results for OL equals 10 and lOa, respectively. 
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The smoothing technique has, in addition, useful applications in the field of 
data approximation. By simply varying the value of the smoothing parameter, the 
nature of the approximation can be changed from a relatively simple shape to 
one of much greater detail, greater, in fact than normal polynomial approximations 
will provide. Facilities also exist by which the solution gradient may be preset at 
any required points. Although this had no application in the examples considered, 
it would clearly be useful for that type of problem in which the asymptotic behavior 
of the solution was known. 

A further facility which was not demonstrated by example is that of data 
weighting. Increasing the weighting of a data point both decreases the difference 
between the measured and estimated values at that point and also decreases the 
level of smoothing in the neighborhood of the point. By this means, therefore, the 
level of smoothing over the entire solution may be varied as required. 
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